typeScript
- Typescript
- 使用 nvm 来管理 node 版本
为什么要学习ts
- 程序更容易理解
- 函数或者方法输入输出的参数类型、外部条件
- 动态语言的约束:需要手动调试等过程
- ts可以解决以上问题
- 效率更高
- 在不同的代码块和定义中进行跳转
- 代码自动补全
- 丰富的接口提示
- 更少的错误
- 编译期间能够发现大部分错误
- 杜绝一些比较常见的错误
- 非常好的包容性
- 完全兼容javascript
- 第三方库可以单独编写类型文件
- 大多数项目都支持ts
- 缺点
- 增加一些学习成本
- 短期内增加了一些开发成本
安装 Typescript:
1
2npm install -g typescript
yarn global add typescript使用 tsc 全局命令:
1
2
3
4
5
6// 查看 tsc 版本
tsc -v
// 编译 ts 文件
tsc fileName.ts
// 运行
ts-node fileName.ts数组和元组
1
2
3
4
5
6
7
8
9
10
11//最简单的方法是使用「类型 + 方括号」来表示数组:
let arrOfNumbers: number[] = [1, 2, 3, 4]
//数组的项中不允许出现其他的类型:
//数组的一些方法的参数也会根据数组在定义时约定的类型进行限制:
arrOfNumbers.push(3)
arrOfNumbers.push('abc')
// 元祖的表示和数组非常类似,只不过它将类型写在了里面 这就对每一项起到了限定的作用
let user: [string, number] = ['viking', 20]
//但是当我们写少一项 就会报错 同样写多一项也会有问题
user = ['molly', 20, true]interface 接口
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28// 我们定义了一个接口 Person
interface Person {
name: string;
age: number;
}
// 接着定义了一个变量 viking,它的类型是 Person。这样,我们就约束了 viking 的形状必须和接口 Person 一致。
let viking: Person ={
name: 'viking',
age: 20
}
//有时我们希望不要完全匹配一个形状,那么可以用可选属性:
interface Person {
name: string;
age?: number;
}
let viking: Person = {
name: 'Viking'
}
//接下来还有只读属性,有时候我们希望对象中的一些字段只能在创建的时候被赋值,那么可以用 readonly 定义只读属性
interface Person {
readonly id: number;
name: string;
age?: number;
}
viking.id = 9527函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24// 来到我们的第一个例子,约定输入,约定输出
function add(x: number, y: number): number {
return x + y
}
// 可选参数
function add(x: number, y: number, z?: number): number {
if (typeof z === 'number') {
return x + y + z
} else {
return x + y
}
}
// 函数本身的类型
const add2: (x: number, y: number, z?:number) => number = add
// interface 描述函数类型
const sum = (x: number, y: number) => {
return x + y
}
interface ISum {
(x: number, y: number): number
}
const sum2: ISum = sum类型推论,联合类型 和 类型断言
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26// 联合类型 - union types
// 我们只需要用中竖线来分割两个
let numberOrString: number | string
// 当 TypeScript 不确定一个联合类型的变量到底是哪个类型的时候,我们只能访问此联合类型的所有类型里共有的属性或方法:
numberOrString.length
numberOrString.toString()
// 类型断言 - type assertions
// 这里我们可以用 as 关键字,告诉typescript 编译器,你没法判断我的代码,但是我本人很清楚,这里我就把它看作是一个 string,你可以给他用 string 的方法。
function getLength(input: string | number): number {
const str = input as string
if (str.length) {
return str.length
} else {
const number = input as number
return number.toString().length
}
}
// 类型守卫 - type guard
// typescript 在不同的条件分支里面,智能的缩小了范围,这样我们代码出错的几率就大大的降低了。
function getLength2(input: string | number): number {
if (typeof input === 'string') {
return input.length
} else {
return input.toString().length
}
}枚举 Enums
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23// 数字枚举,一个数字枚举可以用 enum 这个关键词来定义,我们定义一系列的方向,然后这里面的值,枚举成员会被赋值为从 0 开始递增的数字,
enum Direction {
Up,
Down,
Left,
Right,
}
console.log(Direction.Up)
// 还有一个神奇的点是这个枚举还做了反向映射
console.log(Direction[0])
// 字符串枚举
enum Direction {
Up = 'UP',
Down = 'DOWN',
Left = 'LEFT',
Right = 'RIGHT',
}
const value = 'UP'
if (value === Direction.Up) {
console.log('go up!')
}泛型 Generics
- 泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性
- 相当于一个占位符
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17function echo(arg) {
return arg
}
const result = echo(123)
// 这时候我们发现了一个问题,我们传入了数字,但是返回了 any
function echo<T>(arg: T): T {
return arg
}
const result = echo(123)
// 泛型也可以传入多个值
function swap<T, U>(tuple: [T, U]): [U, T] {
return [tuple[1], tuple[0]]
}
const result = swap(['string', 123])
泛型约束
- 在函数内部使用泛型变量的时候,由于事先不知道它是哪种类型,所以不能随意的操作它的属性或方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23function echoWithArr<T>(arg: T): T {
console.log(arg.length)
return arg
}
// 缺陷 只能指定特定类型
// function echoWithArr<T>(arg: T[]): T[] {
// console.log(arg.length)
// return arg
// }
// 上例中,泛型 T 不一定包含属性 length,我们可以给他传入任意类型,当然有些不包括 length 属性,那样就会报错
interface IWithLength {
length: number;
}
function echoWithLength<T extends IWithLength>(arg: T): T {
console.log(arg.length)
return arg
}
echoWithLength('str')
const result3 = echoWithLength({length: 10})
const result4 = echoWithLength([1, 2, 3])
- 在函数内部使用泛型变量的时候,由于事先不知道它是哪种类型,所以不能随意的操作它的属性或方法
泛型与类和接口
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37class Queue {
private data = [];
push(item) {
return this.data.push(item)
}
pop() {
return this.data.shift()
}
}
const queue = new Queue()
queue.push(1)
queue.push('str')
console.log(queue.pop().toFixed())
console.log(queue.pop().toFixed())
//在上述代码中存在一个问题,它允许你向队列中添加任何类型的数据,当然,当数据被弹出队列时,也可以是任意类型。在上面的示例中,看起来人们可以向队列中添加string 类型的数据,但是那么在使用的过程中,就会出现我们无法捕捉到的错误,
class Queue<T> {
private data = [];
push(item: T) {
return this.data.push(item)
}
pop(): T {
return this.data.shift()
}
}
const queue = new Queue<number>()
//泛型和 interface
interface KeyPair<T, U> {
key: T;
value: U;
}
let kp1: KeyPair<number, string> = { key: 1, value: "str"}
let kp2: KeyPair<string, number> = { key: "str", value: 123}类型别名(Type Aliases) 和 交叉类型( Intersection Types)
- 类型别名,就是给类型起一个别名,让它可以更方便的被重用
1 | let sum: (x: number, y: number) => number |
1 | interface IName { |